$\sum_{\text {Rincon }}^{E l} \sqrt[2 e l]{\text { Ingeniero }}$
 http://www.elrincondelingeniero.com/

Find the resultant force and moment and the support straight line of the next distributed load, considering $\mathrm{x}_{\mathrm{a}}=2 \mathrm{~m}, \mathrm{x}_{\mathrm{q}}=4$ $\mathrm{m}, \mathrm{x}_{\mathrm{c}}=6 \mathrm{~m}$

Note: q is in N / m

Solution:

When a generic continuous distribution of load like the next one is given:

It is possible to calculate the resultant force and moment it creates just by integrating the curve, following the next process:

$$
\begin{aligned}
F & =\int_{0}^{L} q(x) \cdot d x \\
M & =\int_{0}^{L} q(x) \cdot x \cdot d x
\end{aligned}
$$

And then for the calculation of the support straight line:

$$
M=A P \times F
$$

But AP and F are perpendiculars, so:

$$
A P=\frac{M}{F}
$$

Once reviewed these points, we begin to solve the exercise. The first step is to determine $q(x)$. In this case this task can be easily done using the next expression:

$$
\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}
$$

Thus from x_{a} to x_{q} :
$\mathrm{q}(\mathrm{x}=2)=0$
$\mathrm{q}(\mathrm{x}=4)=\mathrm{q}$
$\frac{q(x)-0}{q-0}=\frac{x-2}{4-2} \rightarrow q(x)=\frac{q}{2}(x-2)$
And from x_{q} to x_{c}
$q(x=4)=q$
$\mathrm{q}(\mathrm{x}=6)=0$
$\frac{q(x)-q}{0-q}=\frac{x-4}{6-4} \rightarrow q(x)=\frac{q}{2}(6-x)$
Once $\mathrm{q}(\mathrm{x})$ is obtained we will proceed with the calculation of the resultant force:

$$
\begin{aligned}
& \mathrm{F}=\int_{\mathrm{x}_{\mathrm{a}}}^{\mathrm{x}_{\mathrm{c}}} \mathrm{q}(\mathrm{x}) \cdot \mathrm{dx}=\int_{2}^{4} \frac{q}{2}(x-2) \cdot \mathrm{dx}+ \\
& +\int_{4}^{6} \frac{q}{2}(6-x) \cdot d x=\left[\frac{q}{2} \frac{(x-2)^{2}}{2}\right]_{2}^{4}+ \\
& +\left[\frac{q}{2} \frac{(6-x)^{2}}{2}\right]_{6}^{4}=\mathrm{q}+\mathrm{q}=2 \mathrm{q}
\end{aligned}
$$

Then: $\mathbf{F}=\mathbf{2 q}(\mathbf{N})$

$$
\sum_{\substack{\text { Rincoon }}}^{\sqrt[\text { del }]{\text { El }} \sqrt{\text { Ingeniero }}}
$$

This could have been also quickly calculated by simply considering that the area below of the curve is:
$A=2 \cdot \frac{1}{2} q \cdot L=2 \cdot \frac{1}{2} q \cdot 2=2 q$
Now for the calculation of the resultant moment:
$M=\int_{x_{a}}^{x_{c}} q(x) \cdot x \cdot d x=\int_{2}^{4} \frac{q}{2}(x-2) \cdot x \cdot d x+$
$+\int_{4}^{6} \frac{q}{2}(6-x) \cdot x \cdot d x=\left[\frac{q}{2}\left(\frac{x^{3}}{3}-x^{2}\right)\right]_{2}^{4}+$
$+\left[\frac{q}{2}\left(\frac{x^{3}}{3}-3 x^{2}\right)\right]_{6}^{4}=\frac{q}{2}\left(\frac{4^{3}}{3}-4^{2}\right)-$
$-\frac{q}{2}\left(\frac{2^{3}}{3}-2^{2}\right)+\frac{q}{2}\left(\frac{4^{3}}{3}-3.4^{2}\right)-$
$\frac{q}{2}\left(\frac{6^{3}}{3}-3.6^{2}\right)=\frac{q}{6}(16+4-80+108)$
$\mathbf{M}=\mathbf{8 q}(\mathbf{N} . \mathbf{m})$
Finally for calculating the support straight line:
$A P=\frac{8 q \mathrm{~N} . \mathrm{m}}{2 q \cdot N}=4 \mathrm{~m}$
Then, there is an equivalent system to the first one, just made up a simple punctual load of $2 q$ at a distance of 4 meters from the origin.

