http://www.elrincondelingeniero.com/

The system shown in the figure is made up of a beam connected on its right end to a truss.

Data:

$$L_{EF} = L_{FG} = L_{EG} = 4 m$$

$$D_{EF} = D_{FG} = D_{EG} = 0.04 m$$
 (diameter)

$$L_{AB} = L_{BC} = L_{DE} = 1 m$$
; $L_{CD} = 2 m$

Young modulus = 210 GPA

Determine:

- a) DSI of the truss and its possible implications.
- b) Reaction forces in supports A and E.
- c) Reaction forces in supports F and G.
- d) Using the **method of the joints**, the axial forces in all members of the structure indicating if they are tensile or compressive.
- e) Using the **method of the sections**, the axial forces in bars FE and FG.
- f) Normal stress in member EF.

Solution:

In order to solve the exercise, we will separate both structures and add the corresponding internal forces as it is shown in the drawings.

1. <u>DSI Isolated truss</u>

$$EDSI = R - EDOF = 3 - 3 = 0$$

$$IL = 3.2.(2-1) = 6$$

$$IDOF = 3.(3 - 1) = 6$$

$$IDSI = IL - IDOF = 0$$

$$DSI = EDSI + IDSI = 0$$

Alternatively

$$DSI = r + m - 2j = 3 + 3 - 2.6 = 0$$

Thus, structure is entirely linked and the reactions exerted by the supports can be determined using equilibrium conditions.

2. Reaction forces beam

$$\sum M_E = 0 \to 5V_A - 4.8 - 2.2.2 = 0$$

$$V_A = 8 kN$$

$$\sum F_y = 0 \to V_E = 2.2 + 12 - 8$$

$$V_E = 4 kN$$

$$\sum F_{x} = 0 \to \boldsymbol{H}_{E} = \boldsymbol{0} \, \boldsymbol{k} \boldsymbol{N}$$

3. Reaction forces in the truss

Isolating the system:

http://www.elrincondelingeniero.com/

$$\sum M_G = 0 \to 4V_F - 2.4 = 0$$

$$V_F = 2 kN$$

$$\sum F_y = 0 \rightarrow V_G = 4 - 2 \rightarrow V_G = 2 \ kN$$

$$\sum F_{x} = 0 \to \boldsymbol{H}_{F} = \boldsymbol{0} \ \boldsymbol{k} \boldsymbol{N}$$

4. <u>Internal forces (using the method of</u> the nodes)

Node F

$$\sum F_y = 0 \rightarrow 2 + N_{FE}.\sin 60 = 0$$

$$N_{FE} = \frac{4}{3}\sqrt{3} \ kN \ (C)$$

$$N_{GE} = \frac{4}{3}\sqrt{3} \ kN \ (C) (simmetry)$$

$$\sum F_x = 0 \to N_{FE}.\cos 60 + N_{FG} = 0$$

$$N_{FG} = \frac{2\sqrt{3}}{3} \ kN \ (T)$$

5. <u>Internal forces (using the method of sections)</u>

$$\tan 60^\circ = \frac{h}{2} \to h = 2\sqrt{3} m$$

$$\sum M_E = 0 \to 2. V_F - N_{FG}. 2\sqrt{3} = 0$$

$$N_{FG} = \frac{2\sqrt{3}}{3} kN (T)$$

$$\sum F_{y} = 0 \to V_{F} - V_{E} - N_{EG}.\cos 30 = 0$$

$$N_{FE} = \frac{4}{3}\sqrt{3} \ kN \ (C)$$

6. <u>Calculation of the normal stress in EF.</u>

$$\sigma = \frac{N}{A} = E \cdot \varepsilon = E \cdot \frac{\Delta l}{l} \to \Delta l = \frac{Nl}{EA}$$

$$\Delta l_{EF} = \frac{\frac{4}{3}\sqrt{3} \ 10^3 N .4 m}{210.10^9 Pa. \pi. \ 0.02^2 m^2} = \mathbf{0}, \mathbf{035} \ mm$$