In the structure $A B C D E F$ shown in the next figure, C is a pin, E and F are roller supports, and A is a simply support.

Determine:

a) Internal, external and global degree of static indeterminacy explaining clearly its implications.
b) Reaction forces $\left(\mathrm{H}_{\mathrm{A}}, \mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{E}}, \mathrm{V}_{\mathrm{F}}\right)$ using the equations of equilibrium.
c) Shear forces and Bending moment laws and diagrams of the beam.
d) Maximum value \mathbf{q} that the triangular load could reach if the maximum bending moment at stretch AB is limited to 1 kN .m.

NOTE: The clarity in the answer and the justification of the results will be taken into account.

a) EDSI

EDSI $=4-3=1$
IDOF $=3(2-1)=3$
$\mathrm{IL}=2(2-1)=2$
IDSI $=2-3=-1$
DSI $=\mathrm{EDSI}+\mathrm{IDSI}=1-1=0$
The structure is completely linked, and the reactions are statically determined.
b) Calculation of the reactions
$\sum \mathrm{M}_{\mathrm{C}}=0 \rightarrow 2 \mathrm{~V}_{\mathrm{A}}-(1 / 2) \cdot 6 \cdot 1 \cdot(1+1 / 3)=0$
$\mathbf{V}_{\mathrm{A}}=\mathbf{2 k N} ; \mathrm{H}_{\mathrm{A}}=\mathbf{0} \rightarrow \nexists \mathrm{F}_{\mathrm{x}}$
$\sum \mathrm{M}_{\mathrm{F}}=0 \rightarrow 6 \mathrm{~V}_{\mathrm{A}}-\frac{6 \cdot 1}{2} \cdot(5+1 / 3)-4 \cdot 3+2 \mathrm{~V}_{\mathrm{E}}+2=0$
$\mathbf{V}_{\mathrm{E}}=7 \mathrm{kN}$
$\sum \mathrm{F}_{\mathrm{y}}=0 \rightarrow 7+2+\mathrm{V}_{\mathrm{F}}=3+4 \rightarrow \mathbf{V}_{\mathbf{F}}=\mathbf{- 2} \mathbf{k N}$

c) Force laws

$0 \leq x \leq 1$

$\mathrm{q}(\mathrm{x})=\mathrm{q}_{0} \frac{\mathrm{x}}{\mathrm{L}}=6 \frac{\mathrm{x}}{1}=6 \mathrm{x}$
$V_{T}(x)=\int_{0}^{x} 6 \cdot z \cdot d z=3 x^{2}$
$M_{T}(x)=\int_{0}^{x} 3 z^{2} \cdot d z=x^{3}$
$\mathrm{V}_{1}=2-3 \mathrm{x}^{2} \mathrm{kN}$
$M_{1}=2 x-x^{3} k N . m$
$M_{\text {max }} \rightarrow \frac{d M(x)}{d x}=V(x)=0 \rightarrow x=\sqrt{2 / 3} m$
$M_{\text {max }}=2 \sqrt{2 / 3}-(2 / 3)^{3 / 2}=\mathbf{1}, \mathbf{0 9} \mathbf{k N} . \mathrm{m}$
$1 \leq \mathrm{x} \leq 3$

$2-\frac{1.6}{2}-V_{2}=0 \rightarrow \mathbf{V}_{\mathbf{2}}=-\mathbf{1} \mathbf{k N}$
$2 \mathrm{x}-3\left(\mathrm{x}-\frac{2}{3}\right)-\mathrm{M}_{2}=0 ; \mathbf{M}_{\mathbf{2}}=\mathbf{x}-\mathbf{2} \mathbf{k N} . \mathbf{m}$
$3 \leq x \leq 4$

$2-\frac{1.6}{2}-4-\mathrm{V}_{3}=0 \rightarrow \mathbf{V}_{\mathbf{3}}=-\mathbf{5} \mathbf{~ k N}$
$2 x-3\left(x-\frac{2}{3}\right)-4(x-3)-M_{3}=0 ;$
$M_{3}=-5 x+14 k N . m$
$4 \leq x \leq 6$

$2-(1 / 2) \cdot 6-4+7-V_{4}=0 \rightarrow \mathbf{V}_{\mathbf{4}}=\mathbf{2} \mathbf{k N}$
$2 x-3\left(x-\frac{2}{3}\right)-4(x-3)-7(x-4)+2-M_{4}=0$
$\mathrm{M}_{4}=\mathbf{2 x}-12 \mathrm{kN} . \mathrm{m}$

Diagrams

d) Value of q
$\sum M_{c}=0 \rightarrow 2 V_{A}-(1 / 2) \cdot q \cdot 1 \cdot(1+1 / 3)=0$
$V_{A}=\frac{q}{3} ; q(x)=q \frac{x}{L}=q x$
$V_{1}=\frac{q}{3}-\frac{q}{2} x^{2}$
$M_{1}=\frac{q x}{3}-\frac{q}{6} x^{3}=\frac{q x}{3}\left(1-\frac{x^{2}}{2}\right)$
$M_{\text {max }} \rightarrow \frac{d M(x)}{d x}=V(x)=0 \rightarrow x=\sqrt{\frac{2}{3}} m$
$M_{\max }\left(x=\sqrt{\frac{2}{3}}\right)=\frac{q}{3} \sqrt{\frac{2}{3}}\left(1-\frac{2 / 3}{2}\right)=\frac{q}{3} \sqrt{\frac{2}{3}} \cdot \frac{2}{3}$
$M_{\max }=\frac{q}{3}\left(\frac{2}{3}\right)^{3 / 2}=1 \rightarrow q=\frac{3}{\sqrt{\frac{2}{3}} \cdot \frac{2}{3}}=\frac{9 \sqrt{3}}{2 \sqrt{2}} \cong \mathbf{5 . 5 1} \frac{\mathbf{k N}}{\mathbf{m}}$
Note: if the value of $1.09 \mathrm{kN} / \mathrm{m}$ was previously determined and because there is linearity, it could have also been calculated as:
$\frac{6}{1.09}=\frac{\mathrm{q}}{1} \rightarrow \mathbf{q} \cong \mathbf{5 . 5 1} \frac{\mathbf{k N}}{\mathbf{m}}$

