The system shown in the figure is made up of a cable connected on its left end to a truss. The next parameters of the cable are known: distance between points A and B $D_{a b}=12 m$, weight per unit of length $p=100 \mathrm{~N} / \mathrm{m}$ and the value of the minimum tension of the cable $\mathrm{T}_{0}=1 \mathrm{kN}$.

Data:
$\mathrm{L}_{12}=\mathrm{L}_{23}=\mathrm{L}_{34}=\mathrm{L}_{41}=\mathrm{L}_{35}$
Determine:
a) Reaction forces in points a and b.
b) Length of the cable.
c) DSI of the truss and its possible implications.
d) Using the method of the joints, the axial forces in all members of the structure indicating if they are tensile or compressive.
e) Using the method of the sections, the axial forces in bars 45 and 35 and the reaction force at the support located in point 1, indicating if they are tensile or compressive.

As a result, reactions forces in point 2 have the same magnitude and opposite sign to the ones exerted by the cable.

Node 2

$\sum F_{x}=0 \rightarrow N_{12}=1000 \boldsymbol{N}(T)$
$\sum F_{y}=0 \rightarrow N_{23}=\mathbf{6 3 5} N(T)$

Node 1

$\sum F_{x}=0 \rightarrow \frac{\sqrt{2}}{2} N_{13}+1000=0$
$N_{13}=-1000 \cdot \sqrt{2} N(C)$

Node 3

$\sum F_{x}=0 \rightarrow N_{43}-\sqrt{2} \cdot 1000 \cdot \frac{\sqrt{2}}{2}=0$
$\sum F_{y}=0 \rightarrow N_{35}+1000-635=0$

$$
N_{43}=1000 N(T)
$$

$$
N_{35}=-365 N(C)
$$

Node 4

$$
\sum F_{x}=0 \rightarrow \frac{\sqrt{2}}{2} N_{45}+1000=0
$$

$$
\sum F_{y}=0 \rightarrow N_{41}-\frac{\sqrt{2}}{2} N_{45}=0
$$

$$
N_{45}=-1000 . \sqrt{2} N(C)
$$

$$
N_{41}=-1000 N(C)
$$

5) Method of the sections:

$$
\begin{aligned}
& \sum M_{4}=0 \rightarrow\left(N_{35}+1.000-635\right) \cdot L=0 \\
& \boldsymbol{N}_{35}=-\mathbf{3 6 5} \boldsymbol{N}(\boldsymbol{C}) \\
& \sum F_{x}=0 \rightarrow N_{45} \frac{\sqrt{2}}{2}+1000=0 \\
& \boldsymbol{N}_{45}=-\mathbf{1 0 0 0} \cdot \sqrt{2} \boldsymbol{N}(\boldsymbol{C}) \\
& \sum F_{y}=0 \rightarrow V_{a}-365-1000-635=0 \\
& \boldsymbol{V}_{\boldsymbol{a}}=\mathbf{2 0 0 0} \boldsymbol{k N}
\end{aligned}
$$

Obtaining the same results by both methods.

