The truss shown in the figure, where all members measure 2 m, is loaded by a uniform continuous load of $q = 4 \text{ kN/m}$ in bar 1. Find the correct choice for the next questions.

1. Global degree of static indeterminacy.
 a) $\text{DSI} = 1$
 b) $\text{DSI} = 0$
 c) $\text{DSI} = -1$
 d) $\text{DSI} = 2$

2. The system of forces in member 4 can be replaced by two forces located in the nodes:
 a) 2 kN in A and 2 kN in B
 a) 1 kN in A and -1 kN in B
 b) 4 kN in A and 4 kN in B
 c) 4 kN in A and -2 kN in B

From this point till the end of the exercise, remove the vertical reaction force V_A.
3. Which of the next elements cannot be removed in order to obtain a statically determined structure?
 a) H_a
 b) H_b
 c) Bar #3
 b) Bar #4

4. Horizontal reactions H_a and H_b.
 a) $H_a = -2 \text{kN}; H_b = -6 \text{kN}$
 b) $H_a = -4 \text{kN}; H_b = -4 \text{kN}$
 c) $H_a = -5 \text{kN}; H_b = -3 \text{kN}$
 d) $H_a = -8 \text{kN}; H_b = 0 \text{kN}$

5. For the statically determined structure of the previous question, which of the members are not loaded?
 a) Bars 9 and 5
 b) Bars 5 and 2
 c) Bars 9 and 3
 d) Bars 4 and 5

6. Apply the method of the nodes at point A. Normal forces of bar 6 and 7 are:
 a) $N_6 = 2 \text{kN (T)}; N_7 = 2\sqrt{2} \text{kN (C)}$
 b) $N_6 = 2\sqrt{2} \text{kN (C)}; N_7 = 2 \text{kN (T)}$
 c) $N_6 = 2 \text{kN (C)}; N_7 = 2\sqrt{2} \text{kN (T)}$
 d) $N_6 = 2\sqrt{2} \text{kN (T)}; N_7 = 2 \text{kN (C)}$

7. Draw the force laws diagrams